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Industry Objectives For LES Modeling 

• RANS used routinely for design, test and 
verification 
– Designed and calibrated to provide time average 

flowfield 

• Time resolved flowfield required for: 
– Quantification of time resolved unsteady behavior 

• Acoustics, ignition, unsteady part loads (e.g. high cycle 
fatigue (HCF) forcing), structural interactions (e.g. 
flutter),  transient flows (e.g. inlet unstart, aircraft 
maneuver, take-off), combustion instability, engine 
operability, … 

– Improved prediction of time mean flows 

• Desirable LES characteristics 
– Time mean solution maintained (or improved) 

• Asymptote to RANS solution as space-time resolution is 
reduced 

• Approach DNS as resolution is increased 

– Generality – no problem or scale specific tuning  
– Improve CFD Fidelity 
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LES is practical today for engineering problems of interest – How do we 
quantify accuracy and calibrate methods for the engineering design process? 

LES sgs Model 

RANS Model 
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Industrial LES 

• Outline 
– Example Problem Description 

– Affordability 

– Accuracy 

• Unsteady Spectra 

• Steady state preservation 

– Reacting Flows 

– Conclusions 

 

3 

Affordability and Accuracy drive LES relevance to industry 

This document has been approved for public release. 



• Determine unsteady pressure on plate behind high aspect ratio nozzle 

– Rich flow measurements available 

– Highly instrumented deck 

• ~50 high response pressure transducers 

• Steady RANS captures mean flow 

• Can LES predict the unsteady pressure field? 

Example Problem – HCF Aeromechanic Forcing 
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Relatively low frequencies associated with HCF make it a good candidate for initial 
LES application 



Today can afford (and RANS typically resolves) isotropic resolution to about 1% of 
relevant engineering scale (L) 
– 106 points in an L3 box 

– Dt~L*10-5 sec (L in feet, a~1e3 ft/sec) 

– fmax ~ 105/L Hz = 100/L kHz 

• These scales are of engineering interest 
– Highest structural modes are on this order (most structures less sensitive above this) 

– Acoustic sources (20-20000 Hz) 

• Insufficient resolution for 
– Acoustic propagation to 100L (requires factor of 106 increase in cost) 

– Turbulence spectra (<0.01%L length scale – 108 increase in cost) 

– Chemically reacting flows 

• Doubling resolution increases cost 8-16X, but only gets 2X higher frequency 
– Better RANS and sub-grid models required for foreseeable future 

 

LES Affordability 
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N4 operation count ensures RANS and low frequency LES will be the norm 

Grid filtering 
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• Resolved spectra comparable with data 

– Downstream spectra driven by larger scales – reasonable accuracy 

– Upstream spectra has more high frequency content driven by smaller, 
unresolved scales – reduced accuracy 

LES Accuracy - Predicted Spectra 
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Today’s LES capability can predict  large scale unsteadiness at un-calibrated accuracy 
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• LES may alter the time mean solution 
– Reduced mixing in upstream shear layer (small scales) 

– Changes in mean pressure distribution over the deck as resolution increases 

• How do we interpret unsteady results?  What aspects are more/less 
reflective of physics?  What inaccuracies are introduced by: 
– RANS model deficiencies 

– Inaccurate calculation of resolved scales 

– Sub-grid models 

LES Accuracy - Impact on Mean Flow 
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Steady RANS 

Mean LES:  

Instantaneous LES 

Today’s LES has unintended and un-calibrated impact on mean flow predictions 
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• Scheme order 
– Impacts accuracy of highest resolved frequencies 

– Higher order schemes allow higher frequencies to be computed on fixed grid 

• Grid spacing 
– Increasing  isotropic resolution expensive 

– Cost increase goes as n3 

• Time resolution 
– Code boundary layer stability constraints increase cost of spatially resolved 

frequencies by an order of magnitude 

– As space resolution increases, time resolution will need to increase 

– Total cost for increased resolution goes as n4  

 

LES Accuracy - Drivers 
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LES accuracy dependent on multiple, inter-related, tunable models and assumptions 

Dt=1e-5 

Dt=3e-7 

Time filtering Grid filtering 
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• Boundary Modeling 
– Near wall modeling 

• Near the wall dissipation and energy spectrums overlap 
• Near the wall there are no “universal” small scales to model 
• Hybrid RANS/LES, or LES with DNS resolution is required 

– Inflow Boundary Modeling 
• Inlet turbulence assumptions drive solution 

• Turbulent viscosity model 
– RANS and/or sub-grid turbulence model 
– Over dissipation of flow can over-damp resolved scales 
– Under dissipation leads to  

• Under-prediction of the mean flow mixing in poorly resolved regions 
• Over prediction of resolved unsteadiness 

– Improved sub-grid models are required to maintain or improve prediction of mean flow 

• Reactive Flow Modeling 
– Combustion also occurs on the LES scales (Molecular diffusion, Reaction) 
– Different subgrid scale species variations, which have the same supergrid value  will not have the same  

combustion characteristcs 

LES Accuracy – Drivers (Cont) 
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LES accuracy dependent on multiple, inter-related, tunable models and assumptions 
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Chemical Kinetics  LES Combustion Model 

Detached Eddy Simulation 

LES Dynamic ksgs 
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• Challenges 
– Affordability – Can only resolve largest unsteady scales 

• Large scales of most interest for engineering design 
• Better RANS and sub-grid models required for foreseeable future 

– Accuracy – Code independent accuracy quantification needed 
• Mean flow accuracy  not maintained as resolution increases – asymptote to RANS solution as 

resolution decreases 
• Determine accuracy of mean flow as more unsteadiness is resolved 
• Quantify accuracy of predicted spectra 

– Complex Physics 
 

• Directions 
– Resolve more scales as compute capacity and schemes evolve 

• Resolution of all scales not practical or necessary for most engineering applications 

– Need improved methods to process, present and understand unsteady (LES) results 
– Quantify the accuracy of resolved unsteadiness – spectral accuracy 
– Understand the impact of resolved large scales on mean flow prediction 
– Develop models to improve macro (resolved scale) LES predictions as well as the micro 

(sub-scale) properties is required 
 

LES Challenges in Industrial Setting 
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Accuracy quantification and calibration of engineering parameters of interest 
required for reliable use of LES in design processes 
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